
Story Programming
Lecture Structure
Version: September 2017

© 2017 by Martin Erwig & Jennifer Parham-Mocello

This document contains a lecture plan for teaching an Introduction to Computer Science class
based on the book Once Upon an Algorithm: How Stories Explain Computing. The material has
been selected for a class that has two 50-minute lectures plus a 90-minute lab section per week.

Each week has a main subject and is based on one or more chapters of the book that should
be assigned as background reading before the lecture.

Week 1 Algorithms [Chapter 1]

• What is an algorithm?
• What is a computer?
• Computation as the result of executing an algorithm by a computer
• Computation transforms representation
• What is a problem, and what does it mean to solve a problem?
• Not every algorithm solves a problem given constraints and context
• What does correctness mean?
• In what ways can an algorithm be incorrect? (wrong results, getting stuck, nontermination)
• How can we asses correctness? (testing, proof)

Week 2 Algorithms [Chapter 2]

• Parameters and arguments
• Algorithms solve classes of problems
• Runtime complexity measured as growth rate
• Constant vs. linear vs. quadratic runtime
• Trading memory for runtime

1



Week 3 Representation [Chapter 3]

• Signs (signifier vs. signified � syntax vs. semantics)
• Semantics (� interpretation) of signs depends on context
• Different representations for the same kind of data (numbers)
• Transformation of signifiers (syntax)

Week 4 Representation [Chapter 4]

• Collections
• Data types (set, queue, stack)
• Data structures (list, array, tree)
• Implementing sets with lists and arrays
• Difference between data types and data structures

Week 5 Searching & Sorting [Chapters 5 and 6]

• Binary search
• Insertion & selection sort
• Quicksort & mergesort
• Divide-and-conquer
• Linearithmic runtime

Week 6 Languages & Programming Languages [Chapters 8 and 9]

• Syntax
• Grammar (nonterminals, terminals, production, sentences, syntax tree)
• Semantics
• Introduction to Haskell / Python

Week 7 Control Structures [Chapters 10]

• Sequential composition
• Conditional
• Repeat and while loops

Week 8 Decomposition & Recursion [Chapters 12]

• Recursion
• Base case
• Forms of recursion (descriptive vs. unfolded, bounded vs. unbounded, direct vs. indirect)
• Nontermination
• Recursion vs. loops

2



Week 9 Types & Abstraction [Chapters 14 and 15]

• Types vs. values
• Typing rules
• Reasoning (with types) about programs, finding type errors
• Abstraction vs. generalization
• Definition & use of abstractions
• Different forms of abstraction (functional, data, time)

Week 10 Limits of Computation [Chapters 7 and 11]

• Intractable problems
• Knapsack problems
• Exponential growths
• P=NP problem
• Undecidable problems
• The halting problem

3


